5,161 research outputs found

    A determination of the molar gas constant R by acoustic thermometry in helium

    Get PDF
    We have determined the acoustic and microwave frequencies of a misaligned spherical resonator maintained near the temperature of the triple point of water and filled with helium with carefully characterized molar mass M = (4.002 6032 ± 0.000 0015) g mol-1, with a relative standard uncertainty ur(M) = 0.37×10-6. From these data and traceable thermometry we estimate the speed of sound in our sample of helium at TTPW = 273.16 K and zero pressure to be u0 2 = (945 710.45 ± 0.85) m2 s-2 and correspondingly deduce the value R = (8.314 4743 ± 0.000 0088) J mol-1 K-1 for the molar gas constant. We estimate the value k = R/NA = (1.380 6508 ± 0.000 0015) × 10-23 J K-1 for the Boltzmann constant using the currently accepted value of the Avogadro constant NA. These estimates of R and k, with a relative standard uncertainty of 1.06 × 10-6, are 1.47 parts in 106 above the values recommended by CODATA in 2010

    Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy

    Full text link
    The temperature dependence of phonon excitations and the presence of spin phonon coupling in polycrystalline Pr2NiMnO6 samples were studied using micro-Raman spectroscopy and magnetometry. Magnetic properties show a single ferromagnetic-to-paramagnetic transition at 228 K and a saturation magnetization close to 4.95 \muB/f.u.. Three distinct Raman modes at 657, 642, and 511 cm-1 are observed. The phonon excitations show a clear hardening due to anharmonicity from 300 K down to 10 K. Further, temperature dependence of the 657 cm-1 mode shows only a small softening. This reflects the presence of a relatively weak spin-phonon coupling in Pr2NiMnO6 contrary to other double perovskites previously studied.Comment: 10 pages, 4 fig

    Particle Acceleration and the Production of Relativistic Outflows in Advection-Dominated Accretion Disks with Shocks

    Full text link
    Relativistic outflows (jets) of matter are commonly observed from systems containing black holes. The strongest outflows occur in the radio-loud systems, in which the accretion disk is likely to have an advection-dominated structure. In these systems, it is clear that the binding energy of the accreting gas is emitted primarily in the form of particles rather than radiation. However, no comprehensive model for the disk structure and the associated outflows has yet been produced. In particular, none of the existing models establishes a direct physical connection between the presence of the outflows and the action of a microphysical acceleration mechanism operating in the disk. In this paper we explore the possibility that the relativistic protons powering the jet are accelerated at a standing, centrifugally-supported shock in the underlying accretion disk via the first-order Fermi mechanism. The theoretical analysis employed here parallels the early studies of cosmic-ray acceleration in supernova shock waves, and the particle acceleration and disk structure are treated in a coupled, self-consistent manner based on a rigorous mathematical approach. We find that first-order Fermi acceleration at standing shocks in advection-dominated disks proves to be a very efficient means for accelerating the jet particles. Using physical parameters appropriate for M87 and SgrA*, we verify that the jet kinetic luminosities computed using our model agree with estimates based on observations of the sources.Comment: accepted for publication in the Astrophysical Journa

    Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Get PDF
    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YXY_{X}. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500>1014M⊙E(z)−1M_{500} > 10^{14} M_{\odot} E(z)^{-1}, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z∼2z \sim 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z=2z=2 are 10 per cent lower with respect to z=0z=0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z=0−1z=0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YXY_X is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.Comment: 24 pages, 11 figures, 5 tables, replaced to match accepted versio

    Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model.

    Get PDF
    Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma
    • …
    corecore